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Summary 

A useful chromatographic parameter-the column characteristic, G-is 
defined and derived. It contains all of the dynamic information of 
interest for chromatography, yet it can be determined from a single- 
stage experiment. The column characteristic can be employed directly 
to derive the column transfer function and is related to the Murphree 
stage efficiency for the chromatographic column operated as a single 
equilibrium stage. The relationship of the column characteristic to the 
first normal statistical moment is derived. Application is made to a 
simple physical situation and results are obtained for both a distributed 
and a discrete description of the stationary liquid phase. The nature of 
the discrete approximation is discussed. This paper provides the founda- 
tion for two additional papers that explore in detail several aspects of 
nonequilibrium chromatography. 

A 

INTRODUCTION 

The theory of chromatographic systems has been a popular subject 
for a t  least two decades. Giddings in his review of the evolution of 
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366 J. E. FUNK AND P. R. RONY 

zone-spreading concepts (1) has traced theoretical chromatography 
from its origin in Wilson’s work ( 2 )  through the papers of Martin and 
Synge (5) ; Thomas ( 4 )  ; Van Deemter, Zuiderweg, and Klinkenberg 
( 5 ) ;  Giddings and Eyring (6) ; and Giddings ( 7 ) .  Theoretical work 
in the late 1960s has proved t o  be as diverse as that  cited in Gidding’s 
review. Such work includes papers on the use of infinite integrals 
(8), lLlellin transforms (9), numerical solutions ( l o ) ,  and statistical 
moments (12-16) as well as papers on nonequilibrium theory (17,18), 
gas chromatography a t  finite concentrations (19) , multicomponent 
chromatography (LO), and linear multistate chromatography (21) .  

One approximation that  has been widely used to reduce the com- 
plexity of the conservation-of-mass equations of chromatography has 
been what Giddings calls the “long-term approximation,” i.e., “the 
location and profile of a chromatographic zone is approximated by a 
limiting form which is exact only when the elution time is infinitely 
larger than the time of equilibration between phases” ( 2 2 ) .  Thus, 
most theoretical treatments of chromatography do not apply to the 
transient situation that exists before this approximation becomes 
valid. 

Although the use of the long-term approximation has apparently 
been adequate for most applications of chromatography, i t  would be 
quite desirable to calculate the shape of the elution curve profile from 
the time of injection to the time a t  which the long-term approxima- 
tion becomes valid. Since the peak shape and the location of the 
peak maximum are, a t  short times, quite sensitive to lateral broaden- 
ing mechanisms such as diffusion or rate control in the stationary 
phase, the ability to simulate such curves may suggest experimental 
methods whereby the dynamic characteristics of a chromatographic 
column can readily be measured. 

In  this work, we will demonstrate procedures for calculating or 
simulating the elution curve profile in chromatographic systems. No 
long-term approximation will be made. In  fact, the calculations will 
show at what time and for what types of column conditions this 
approximation becomes valid. Due to  the length of the theoretical 
treatment, we have divided the material into three separate papers: 
I. The Column Characteristic, 6; 11. Analytical Solutions (35) ; and 
111. General Conclusions (34) .  

In  the first paper, the mathematical background for the three 
papers will be developed. The conservation-of-mass equation for a 
chromatographic system will be solved according to  a procedure 
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RETENTION TIME. I 367 

developed elsewhere (21) . A useful transform quantity-the column 
characteristic, (?-will then be defined. Finally, the analytical ex- 
pressions for d will be computed for several situations to illustrate 
the physical meaning of the characteristic and its application to real 
systems. 

THEORETICAL 

We will assume that the reader is familiar with the concept of a 
partition state (23-25). The derivation given below is, in many 
respects, similar to a previous one (21 ) .  Consider a chromatographic 
system in which component i distributes between two physical environ- 
ments-the gas and liquid phases. The three-dimensional conserva- 
tion-of -mass equation (at  constant temperature and pressure) for 
component i in environment s is given by (21)  

%is - D:aVzcia + v:,Vcis - Ria + VI ' Nlis = 0 (1) at 

where cis = molar concentration of partition state a : s 0 
D:, = local diffusion coefficient of i:s 

Nlis = lateral molar flux of i:s 

Ria = rate of production or loss of i:s 

t = time 

v:. = local molar velocity of i : s 

z = axial coordinate 
V = gradient operator with respect to axial coordinate z 
v2 = Laplacian operator with respect to axial coordinate z 

We first integrate Eq. (1) over the total lateral cross-sectional area, 
A L ,  sum over all of the partition states, and observe that the total 
lateral molar flux of component i has a value of zero @ I ) ,  

0 
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368 J. E. FUNK AND P. R. RONY 

by Green's theorem (impermeable lateral boundaries) or by sym- 
metry. Equation (1) therefore becomes 

RisdAL = 0 (3) 

e = l  

Equation (3) is too difficult to solve for the general case, so we 
will now make a number of simplifications. Consider a chroma- 
tographic system in which (a) component i distributes between a gas 
(s = l ) ,  a liquid (s = 2), and a complexing agent dissolved in the 
liquid (s = 3) ; 

(b) the liquid phase is stationary, vi2 = vi3 = 0; (c) the gas-phase veloc- 
ity is constant, vil = vl; (d) there is a reversible chemical reaction be- 

tween partition states 

where k: ,  and k':3 are pseudo-first-order rate constants that are in- 
dependent of z and t ;  (e) the gas-phase concentration is independent 
of the lateral coordinates, cil = cil(z,t) ; and ( f )  the axial dispersion 
terms are small, 

With these assumptions, Eq. (3) first reduces to 

and then to 
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RETENTION TIME. I 369 

where cislAv ( z , t )  represents the concentration cis averaged over the 
later cross-sectional area, A L 2 ,  of the liquid phase, 

/L cisdAI 
(S = 2,3) (11) 1 2  

C i s l A u ( Z , t )  

and 

Equation (10) can be solved with the aid of Laplace transforms, 

c"dy,z,p) = /om e-ptcis(y,z,O dt (13) 

to yield 

(14) 

where y is the lateral coordinate. There will be a relationship (to be 
determined later) between til and the transform of the average liquid- 
phase concentration, (& + &) I A v .  This quantity is defined as the 
column characteristic, G, and is given by the formula, 

a& 
Peii + ( C * ~ Z I A ~  -k 2 i i l l ~ ~ )  -k ui - = 0 az 

(15) 
G =  A 6 i Z l A u  + & / A u  

& 1 

With the aid of Q. (15) ,  Eq. (14) can be simplified to  

which has a solution of 

Equation (17) is the column transfer function; i t  relates the column 
outlet conditions to the column inlet conditions in terms of the trans- 
form variables and is identical to the system transform, S ( p ) ,  dis- 
cussed by Sternberg (26) .  We would like to  note that  the concept of 
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370 1. E. FUNK AND P. R. RONY 

a system transfer function is quite general and widely used in the 
field of control theory. The form of the transfer function depends 
upon the assumptions made in the description of the physical system. 
In the present 
ately after Eq. 

for an impulse 

analysis, these assumptions have been listed immedi- 
(3).  Equation (17)  becomes 

&(z,p) = c9 exp [ - (1 + ; G)] 
input, 

C i l ( 0 , t )  = &(t )  

Since the term, exp(-zzp/v,), in Eq. (18) represents a simple trans- 
port delay, the solution to Eq. (18) will take the form 

cil(z,t) = 0 for 0 < t < z/vl (20) 

where t -- (z/v,)  is the time variable for the inverse in Eq. (21).  

FIRST NORMAL MOMENT 

Of the various approaches to the theoretical description of chroma- 
tographic systems, the statistical moments technique has become 
increasingly popular (11-16). The partial differential equations de- 
scribing the chromatographic system are first solved with the aid of 
Laplaee transforms, as was done in a previous section. Successive 
normal statistical moments are then computed according to the 
formula (27-29), 

Such moments contain, in principle, all of the information associated 
with the elution profile of a chromatographic peak, 

Cil(L,t) = .C-'{&1(L,p) 1 (23) 
and possess the further advantage of not requiring the above inversion 
of &(L,p)  back to the time domain. 

According to Eq. (22), the first normal moment, pi, is given by 
the formula, 
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RETENTION TIME. I 371 

If we apply this equation to the calculation of the first normal moment 
of the concentration profile whose transform is given by Eq. (25), 

In &(L,p) = In &(O,p) - (25) 

we obtain 

a lnMO,P)  + _L p: = -1im - 
P - 0  aP v1 
contribution from contribution from 

input chromatographic column 

We have therefore separated out the contribution to p i  that is due 
to the shape of the input. For an impulse input, Eq. (26) simplifies to 

Application of the final-value theorem (30) 

lim 6 = lim /d” F(u) du 

l imp - = -1im uF(u) 

p-0 u - + m  

a6 
p+o ap u+w 

where the functions u and F(u) are 

L u = t - -  
v1 

F(u) = s-yq 
converts Eq. (27) to 

1 [l F ( u )  du - uF(u) pl = - + - lim 
Vl €lVl u - + m  

I L €ZL 

COLUMN CHARACTERISTIC 

(29) 

The column characteristic is an important transform quantity in 
any diffusion- or rate-controlled chromatographic system. It can be 
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372 J. E. FUNK AND P. R. RONY 

computed according to the definition given by Eq. (15), provided 
that the differential equation and boundary conditions governing 
diffusion and reaction in the liquid phase are known. We will now 
compute the value of & for four different cases: (1) liquid-phase 
diffusion control (distributed), (2) liquid-phase diffusion control 
(discrete approximation) , (3) liquid-phase rate control, and (4) 
impermeable liquid. Although we will develop equations for the 
capillary column shown in Fig. 1, the extension of the calculations 
to other types of chromatographic systems is straightforward. 

Case 1. Liquid-Phase Diffusion Control (Distributed) 

In  the case where there is only diffusion control in the liquid phase 
= k:: = 0), the conservation-of-mass equation for partition state 

where it has been assumed that  the diffusion coefficient, Di2, is 
constant. For the column shown in Fig: 1 and the boundary conditions, 

0 

0 

gos phase - “I 

FIG. 1. Capillary chromatographic system. 

ci2 = KiZCil a t  y = 

where ~i~ is a gas-liquid partition coefficient, 

Equation (33) can be solved with the aid of 
yield 

a (34) 

0 (35) 

(36) 

Laplace transforms to 
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RETENTION TIME. I 

The average concentration of i in the liquid phase is 

Therefore, 

With the aid of the series, 
I -  

a first-term approximation to  Eq. (40) can be obtained, 

(39) 

(40) 

Case 2. liquid-Phase Diffusion Control (Discrete Approximation) 

As another way of eliminating the independent variable, y,  we can 
represent the liquid film as a lumped system (Fig. 2) .  Equations 
(33) through (35) still apply and the average liquid-phase concentra- 
tion, cizIAv, is calculated by the following procedure, which is a vari- 
ation of the method presented by Funk and Houghton (31). 

We integrate Eq. (33) over the cross-sectional area to yield first 

and then 
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374 J .  E. FUNK AND P. R. RONY 

a 0 

- Y  
FIG. 2. Schematic diagram of the liquid film as a lumped system. 

or 

(KizCii - C Z )  (45) 

Equation (45) is solved with the aid of Laplace transforms to give 

The average liquid-phase concentration is calculated according to 

The column characteristic is therefore 
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RETENTION TIME. I 375 

Equation (48) is similar in form to Eq. (42) and is, in fact, a one 
term approximation to Eq. (40). 

Case 3. Liquid-Phase Rate Control 

In  the absence of diffusion control in the liquid phase, the con- 
servation-of-mass equation can be written as 

which, via Laplace transforms, has a solution of 

Since neither ti2 nor ti, is dependent upon the lateral coordinate, y ,  
the integration in Eq. (11) need not be performed and fi becomes 
simply 

Case 4. Impermeable Liquid 

In  this case, component i cannot readily permeate into the liquid 
and ci2 has a value of zero. Therefore 

ti2IAV = 0 (52) 

6 = 0  (53) 

and 

PHYSICAL SIGNIFICANCE OF THE COLUMN CHARACTERISTIC 

The column characteristic has a physical significance, which allows 
us to  theoretically relate diffusion and rate control within a chroma- 
tographic column to diffusion and rate control within a single equilib- 
rium stage (32) .  Equation (15) indicates that  the inverse transform 
of (2, 
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376 J .  E. FUNK AND P. R. RONY 

F( t )  = .C-l(d] (31) 
is the response of the average concentration of component i in the 
stationary phase to a unit impulse change in the concentration of i 
in the vapor phase. Accordingly, the time integral of this inverse 

t r a n s f o r m , p ( t )  dt, is the response to a unit step change in the 
concentration of i in the vapor phase. That is, 

Ci2[Ao(t) + Ci l lAu( t )  = c! /d ~ ( t )  dt (54) 

CiPIAu(t) + CillAv(t) = c!F(t) (impulse response) (55) 

(step response) 

It should be noted that Eqs. (54) and (55) no longer contain the 
axial distance, z,  or the gas-phase velocity, vl, yet they still contain 
the physical parameters that characterize diffusion or rate control 
within the liquid film. These equations suggest a single stage experi- 
ment to determine &the column packing is exposed to a step change 
in the concentration of i in the vapor phase and the uptake is meas- 
ured as a function of time. 

For the distributed liquid film description, 

A tanh qa 
G = Ki2  ___ 

qa 
the inverse transform of the column characteristic is 

n =O 

and 

Equation (57) is shown in Fig. 3, along with the equivalent result 
for the discrete approximation. It is clear that there isn’t much 
difference between the distributed and discrete solutions. The per- 
tinent parameter to be extracted from the experimental data is a 
characteristic diffusion time, a2JDi2. An effective value for this time 
can be obtained experimentally for any kind of packing, not just the 
capillary chromatographic system described in this paper. One note 
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-80th -1.0 

Discrete 

I 1-6' Discrete 

Distributed 

I I I I I I 1 
0.2 0.4 0.6 0.8 1.0 I .2 1.4 

Dl2t 
a2 

l=- 

FIG. 3. Simulated uptake curves corresponding to Eqs. (57) and (61). 

of caution should be mentioned, however. For the experimental value 
of az/Diz  from a single stage experiment to  apply to a chromato- 
graphic column, the resistance to mass transfer in the gas phase must 
be small compared to that in the stationary liquid phase. Haller (33) 
has described the kind of single stage experiment described above 
and has even shown an experimental uptake curve similar to that 
in Fig. 3. 

As we have shown elsewhere (32),  the right-hand side of Eq. (57) 
is the formula for the Murphree stage efficiency, pi (see Eq. 47 in Ref. 
32) 1 

K i 2 q i  /Ot F( t )  dt (58) 

and the right-hand side of Eq. (56) is the time derivative of the 
Murphree stage efficiency (see Eq. 51 in Ref. 32) , 

Equation (59) is significant; i t  states that  the inverse of the column 
characteristic is equal to the product of ~i~ and the time derivative 
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378 J. E. FUNK AND P. R. RONY 

of the Murphree stage efficiency f o r  the chromatographic column 
operated as a single equilibrium stage. The quantity, F ( t ) ,  can there- 
fore be determined by nonchromatographic experimental techniques. 
Once such a function is known, i t  is possible (in principle) to obtain 
its Laplace transform-the column characteristic-and thus to de- 
scribe the behavior of elution peaks before the “long term approxi- 
mation” becomes valid. For systems in which biological macromole- 
cules are separated, there may be good reasons for performing these 
types of measurements (33, 34) .  

OTHER EXAMPLES OF F ( t )  AND ,(‘ F ( t )  d t  

In  the preceding section, we derived the inverse of the column 
characteristic F ( t ) ,  and the time integral of this inverse, J t  F ( t )  d t ,  
for Case 1. Summarized below are the corresponding results for Cases 
2 through 4. 

Case 2. liquid-Phase Diffusion Control (Discrete Approximation) 

8 Di2 

Case 3. liquid-Phase Rate Control 

Case 4. Impermeable liquid 

6 = F( t )  = /k F ( t )  dt = 0 (64) 
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List of Symbols 
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thickness of liquid film (cm) 
total lateral cross-sectional area (cmz) 
concentration (moles/cm3) 
average concentration (moles/cm3) 
Laplace transform of concentration 
Laplace transform of average concentration 
diffusion coefficient (cm2/sec) 
inverse of column characteristic 
column characteristic 
forward pseudo-first-order rate constant (sec-l) 
reverse pseudo-first-order rate constant (sec-l) 
length of chromatographic column (cm) 
molar flux in lateral direction (moles/cm2 sec) 
Laplace transform variable 
time (sec) 
defined by Eq. (30) (sec) 
velocity (cm/sec) 
lateral Cartesian coordinate (cm) 
axial Cartesian coordinate (cm) 

Greek letters 

6 volume fraction (cm3/cm3) 
7 Murphree stage efficiency 
K 

1: 
1: 

partition coefficient (moles/cm3 : moles/cm3) 
first normal statistical moment (sec) 
nth normal statistical moment (sec.) 

Superscripts 

0 initial value 
m value at  lumping point 
’ local value 

Subscripts 

i component i 

is component i in environment s i.e., partition state 
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3 80 J. E. FUNK AND P. R. RONY 

n number of partition states 
n power in Eq. (22) 
s environment s 

1, 2 specific phases 
i l ,  iz, i 3  specific partition states 
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