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Summary

A useful chromatographic parameter—the column characteristic, G—is
defined and derived. It contains all of the dynamie information of
interest for chromatography, yet it can be determined from a single-
stage experiment. The column characteristic can be employed directly
to derive the column transfer function and is related to the Murphree
stage efficiency for the chromatographic column operated as a single
equilibrium stage. The relationship of the column characteristic to the
first normal statistical moment is derived. Application is made to a
simple physical situation and results are obtained for both a distributed
and a discrete description of the stationary liquid phase. The nature of
the discrete approximation is discussed. This paper provides the founda-
tion for two additional papers that explore in detail several aspects of
nonequilibrium chromatography.

INTRODUCTION
The theory of chromatographic systems has been a popular subject
for at least two decades. Giddings in his review of the evolution of

365
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zone-spreading concepts (1) has traced theoretical chromatography
from its origin in Wilson’s work (2) through the papers of Martin and
Synge (3); Thomas (4); Van Deemter, Zuiderweg, and Klinkenberg
(5); Giddings and Eyring (6); and Giddings (7). Theoretical work
in the late 1960s has proved to be as diverse as that cited in Gidding’s
review. Such work includes papers on the use of infinite integrals
(8), Mellin transforms (9), numerical solutions (10), and statistical
moments (17-16) as well as papers on nonequilibrium theory (17, 18),
gas chromatography at finite concentrations (19), multicomponent
chromatography (20), and linear multistate chromatography (21).

One approximation that has been widely used to reduce the com-
plexity of the conservation-of-mass equations of chromatography has
been what Giddings calls the “long-term approximation,” i.e., “the
location and profile of a chromatographic zone is approximated by a
limiting form which is exact only when the elution time is infinitely
larger than the time of equilibration between phases” (22). Thus,
most theoretical treatments of chromatography do not apply to the
transient sifuation that exists before this approximation becomes
valid.

Although the use of the long-term approximation has apparently
been adequate for most applications of chromatography, it would be
quite desirable to calculate the shape of the elution curve profile from
the time of injection to the time at which the long-term approxima-
tion becomes valid. Since the peak shape and the location of the
peak maximum are, at short times, quite sensitive to lateral broaden-
ing mechanisms such as diffusion or rate control in the stationary
phase, the ability to simulate such curves may suggest experimental
methods whereby the dynamic characteristics of a chromatographic
column can readily be measured.

In this work, we will demonstrate procedures for calculating or
simulating the elution curve profile in chromatographic systems. No
long-term approximation will be made. In fact, the calculations will
show at what time and for what types of column conditions this
approximation becomes valid. Due to the length of the theoretical
treatment, we have divided the material into three separate papers:
I. The Column Characteristic, ¢; II. Analytical Solutions (35); and
III. General Conclusions (34).

In the first paper, the mathematical background for the three
papers will be developed. The conservation-of-mass equation for a
chromatographic system will be solved according to a procedure
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developed elsewhere (21). A useful transform quantity—the column
characteristic, G—will then be defined. Finally, the analytical ex-
pressions for G will be computed for several situations to illustrate
the physical meaning of the characteristic and its application to real
systems.

THEORETICAL

We will assume that the reader is familiar with the concept of a
partition state (23-25). The derivation given below is, in many
respects, similar to a previous one (21). Consider a chromatographic
system in which component ¢ distributes between two physical environ-
ments—the gas and liquid phases. The three-dimensional conserva-
tion-of-mass equation (at constant temperature and pressure) for
component ¢ in environment s is given by (21)

acis
ot

- D:‘xvzcia + v:avca‘s - Ris + V_L ’ Nlis =0 (1)

where c;; = molar concentration of partition state | 2:s

D!, = local diffusion coefficient of | :s

N ... = lateral molar flux of | 7:s

R;, = rate of production or loss of | ¢:s

t = time

vi, = local molar velocity of | 7:s

z = axial coordinate
vV = gradient operator with respect to axial coordinate z
v? = Laplacian operator with respect to axial coordinate 2

We first integrate Eq. (1) over the total lateral cross-sectional area,
A |, sum over all of the partition states, and observe that the total
lateral molar flux of component ¢ has a value of zero (21),

| fo, Ve Nt =0 @
s=1 .
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by Green’s theorem (impermeable lateral boundaries) or by sym-
metry. Equation (1) therefore becomes

Z // 9¢ss dA, — z // DV, dA | + z // isVendA |
= A, at Py A1 e=1 A1
_2// RidA, =0 (3)
— A

Equation (3) is too difficult to solve for the general case, so we
will now make a number of simplifications. Consider a chroma-
tographic system in which (a) component ¢ distributes between a gas
(s =1), a liquid (s =2), and a complexing agent dissolved in the
liquid (s = 3);

kid
il |2 |43 @

kis'

(b) the liquid phase is stationary, v;» = v;3 = 0; (c) the gas-phase veloc-
ity is constant, vj; = v;; (d) there is a reversible chemical reaction be-

tween partition states | 7:2 | and | ¢:3 |,

Ry = ki’écia - kzsciz (5)
Ry = kzacm - k;‘:’scw (6)

i/ﬁr&mh=o @)
s=1 *

where k’; and k', are pseudo-first-order rate constants that are in-
dependent of z and ¢; (e) the gas-phase concentration is independent
of the lateral coordinates, ¢i;; = ¢i,(2,t) ; and (f) the axial dispersion
terms are small,

i/LLDW%@hzO ®)
s=1 *

With these assumptions, Eq. (3) first reduces to

3
dcis dca _
5 [L e f[ Sano o

and then to
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dcit | € [0cinlan aCia]M) dca
F 61( s T )t =0 (10)

where cis|av(2,t) represents the concentration c;, averaged over the
later cross-sectional area, 4 |, of the liquid phase,

/ [A cudd

cialAv(z;t) = —FF (S = 2)3) (11)
f f A,
A.L2
and
/ dA,
= 7 JAL
€ = A_L (12)
Equation (10) can be solved with the aid of Laplace transforms,
é(y,2,p) = j(;m e P, (y,2,t) di (13)
to yield
0é;
péa + per (Gioav + €islan) + 01 % =0 (14)
€1 z

where y is the lateral coordinate. There will be a relationship (to be
determined later) between é;; and the transform of the average liquid-
phase concentration, (¢iz+ éis) |a». This quantity is defined as the
column characteristic, G, and is given by the formula,

Q= Cialar + Eislaw (15)

py
(3%

With the aid of Eq. (15), Eq. (14) can be simplified to

€2 A) 4 déi _
p(1+ﬂa)cﬂ+vg_o (16)
which has a solution of
- o[- 70 20)
nOp) ~ exp o 14+ 61G a7

Equation (17) is the column transfer function; it relates the column
outlet conditions to the column inlet conditions in terms of the trans-
form variables and is identical to the system transform, S(p), dis-
cussed by Sternberg (26). We would like to note that the concept of
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a system transfer function is quite general and widely used in the
field of control theory. The form of the transfer function depends
upon the assumptions made in the description of the physical system.
In the present analysis, these assumptions have been listed immedi-
ately after Eq. (3). Equation (17) becomes

éi(z,p) = clexp [—— z—? (1 + :—i@)] (18)
for an impulse input,
Cil(O,t) = C?a(l) (19)

Since the term, exp(—zp/v,), in Eq. (18) represents a simple trans-
port delay, the solution to Eq. (18) will take the form

calzt) =0 for 0<t<z/n (20)

i1 (z,t - i) = £7! {c?- exp [— Za p@]} for z/vi <t (21)
" U1 €

where ¢ -— (2/v,) is the time variable for the inverse in Eq. (21).

FIRST NORMAL MOMENT

Of the various approaches to the theoretical description of chroma-
tographic systems, the statistical moments technique has become
increasingly popular (11-16). The partial differential equations de-
scribing the chromatographic system are first solved with the aid of
Laplace transforms, as was done in a previous section. Successive
normal statistical moments are then computed according to the
formula (27-29),

w© 6"6, L’
/ trea(L,t) di _Tli)”l)
wy= e = () lim 22)
[) ea(L,t) dt p—0 Cua(L,p)

Such moments contain, in principle, all of the information associated
with the elution profile of a chromatographic peak,

ca(L,t) = £7{éu(L,p)} (23)

and possess the further advantage of not requiring the above inversion
of éis(L,p) back to the time domain.

According to Eq. (22), the first normal moment, yj, is given by
the formula,
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W = —lim 4 ln é,(L,p)

24
L = (24)

If we apply this equation to the calculation of the first normal moment
of the concentration profile whose transform is given by Eq. (25),

In 6a(L,p) = In 64(0,p) — 2P (1 + & G) (25)
we obtain
J = —lim 10620p) | L [1 Lo (G +p aG)] (26)
p—0 ap p—-»O 6
contribution from conmbutlon from
input chromatographic column

We have therefore separated out the contribution to u] that is due
to the shape of the input. For an impulse input, Eq. (26) simplifies to

oG
m——+ﬂvlp_*0((r’+pa) (27)
Application of the final-value theorem (30)
lim @ = lim / " F(u) du (28)
p—0 U—> o0 0
oG .
lim P5 = —lim uF (u) (29)
p—0 p y— ©

where the functions w and F(u) are

. L
u=t-— " (30)
Flu) = &G} (31)
converts Eq. (27) to
= L 4+ 2 el lim [/ F(u) du — uF(u)] (32)
(5% €101 o 0

COLUMN CHARACTERISTIC

The column characteristic is an important transform quantity in
any diffusion- or rate-controlled chromatographic system. It can be
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computed according to the definition given by Eq. (15), provided
that the differential equation and boundary econditions governing
diffusion and reaction in the liquid phase are known. We will now
compute the value of @ for four different cases: (1) liquid-phase
diffusion control (distributed), (2) liquid-phase diffusion control
(discrete approximation), (3) liquid-phase rate control, and (4)
impermeable liquid. Although we will develop equations for the
capillary column shown in Fig. 1, the extension of the calculations
to other types of chromatographic systems is straightforward.

Case 1. Liquid-Phase Diffusion Control (Distributed)

In the case where there is only diffusion control in the liquid phase
(k%5 = ks = 0), the conservation-of-mass equation for partition state

2:2 | becomes

3265
— Die —5?!—2—2 =0 (33)

9C;2
at

where it has been assumed that the diffusion coefficient, D;,, is
constant. For the column shown in Fig: 1 and the boundary conditions,

0 wall L
Y z CEAT L)
liquid film
Q
gas phase e )
'
y

FIG. 1. Capillary chromatographic system.

Ciz = KiaCi1 at y=a (34)
dacie i _
5y =0 at  y=0 (35)
where «;; 1s a gas-liquid partition coefficient,
= G2 _ o
T (36)

Equation (33) can be solved with the aid of Laplace transforms to
yield
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« _ . coshgy
Ciz = Ki2Ci1 COSh qa (37)
2 P
= (38)
The average concentration of 7 in the liquid phase is
é«;z dy
612 Av — [) a = Ki2éilw (39)
A q"
0
Therefore,
G = tanh ga (40)
qa
With the aid of the series,
3
tanh a \/ Da  2Da 1 1
—— 2 T + 7] + ... (41)
P a + T L)y p+9 T 5e
a Dis 4a? 4a?
a first-term approximation to Eq. (40) can be obtained,
2Di2
a o 4
= K,‘2_+‘m ( 2)
p 4a?

Case 2. Liquid-Phase Diffusion Control (Discrete Approximation)

As another way of eliminating the independent variable, y, we can
represent the liquid film as a lumped system (Fig. 2). Equations
(33) through (35) still apply and the average liquid-phase concentra-
tion, Ciz|s, is calculated by the following procedure, whieh is a vari-
ation of the method presented by Funk and Houghton (31).

We integrate Eq. (33) over the cross-sectional area to yield first

a3 1 @ _ Dig é)c,-z
ot [a,/o Gz dy} T a dy (43)

y=a

and then
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- /
gas liquid film

Ki2Cit

L]
Ci2

o\ NN

. |

FIG. 2. Schematic diagram of the liquid film as a lumped system.

Vol o ] _ Da saca—cp
9t [Ciaa + 1 (kisca ci2)] = a a/2 (44)
or
d13 1 2D; m
52 [Z ch+ LI Ki20i1:| = “52—2 (Kﬂcil - Ciz) (45)
Equation (45) is solved with the aid of Laplace transforms to give
8Di2
) @ P
Cﬁ = 81)12— K:2C51 (46)
a? + 3p

The average liquid-phase concentration is calculated according to

R [, 3, 1
Cizlar = a /0 bndy = 2 o + 7 b
8 Di2
3 a? R
= —gDa Kiali1 (47)
3 a

The column characteristic is therefore
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8 D
R 2
O =gy % (48)
+ 8 Diz
P 3 a?

Equation (48) is similar in form to Eq. (42) and is, in fact, a one
term approximation to Eq. (40).
Case 3. Liquid-Phase Rate Control

In the absence of diffusion control in the liquid phase, the con-
servation-of-mass equation can be written as

ac,- ’ ’
6t3 = kistiz — kicis (49)
which, via Laplace transforms, has a solution of
k/'géi2
bin = —= 50
? p+ ki (50)

Since neither é;; nor ¢é;s is dependent upon the lateral coordinate, y,
the integration in Eq. (11) need not be performed and G becomes
simply

7
A~ . %3

0= (145 5%) oy
Case 4. Impermeable Liquid

In this case, component ¢ cannot readily permeate into the liquid
and ¢;, has a value of zero. Therefore

Ciolar = 0 (52)

and

G=0 (53)

PHYSICAL SIGNIFICANCE OF THE COLUMN CHARACTERISTIC

The column characteristic has a physical significance, which allows
us to theoretically relate diffusion and rate control within a chroma-
tographic column to diffusion and rate control within a single equilib-
riun} stage (32). Equation (15) indicates that the inverse transform

of G,
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F@) = £{@G} (31)
is the response of the average concentration of component ¢ in the

stationary phase to a unit impulse change in the concentration of ¢
in the vapor phase. Accordingly, the time integral of this inverse

transform, L Vi (¢) dt, is the response to a unit step change in the

concentration of ¢ in the vapor phase. That is,

Cio 4o(t) + Cislan(t) = 2 [) t F() dt (step response) (54)
Cizlas(t) + Cislau(t) = AF (1) (impulse response) (55)

It should be noted that Eqgs. (54) and (55) no longer contain the
axial distance, z, or the gas-phase velocity, v,, yet they still contain
the physical parameters that characterize diffusion or rate control
within the liquid film. These equations suggest a single stage experi-
ment to determine G—the column packing is exposed to a step change
in the concentration of ¢ in the vapor phase and the uptake is meas-
ured as a function of time.

For the distributed liquid film description,

G = xa tanh ga
qa

the inverse transform of the column characteristic is

(40)

e ke 4a?

Fity £G) 2D,2zexp[_w] (56)

and

t w0
[, F(t) dt 8 1 [ Dan(2n + 1)%xt
w1 m zo Cnt 1P|~ 4q? ] (57)
Equation (57) is shown in Fig. 3, along with the equivalent result
for the discrete approximation. It is clear that there isn’t much
difference between the distributed and discrete solutions. The per-
tinent parameter to be extracted from the experimental data is a
characteristic diffusion time, a?/D;,. An effective value for this time
can be obtained experimentally for any Eind of packing, not just the
capillary chromatographic system described in this paper. One note
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10—
-—==Both —=1.0
08—
Distributed~_,“,
08 \> Discrete
C'II‘W(T) | e‘%T Discret
—AVe - iscrete
C )
1 |ave! ’04 Cialpe™ —
. C (@)
|!|Ave \ . g 2 | —(2nen)? :_2,
02 vt n=o (2n+1)°
’ Distributed
o | | 1 i | 1
(o} 0.2 04 06 08 1.0 1.2 1.4
Ts —2‘:'

FIG. 3. Simulated uptake curves corresponding to Egs. (57) and (61).

of caution should be mentioned, however. For the experimental value
of a?/D;, from a single stage experiment to apply to a chromato-
graphic column, the resistance to mass transfer in the gas phase must
be small compared to that in the stationary liquid phase. Haller (33)
has deseribed the kind of single stage experiment described above
and has even shown an experimental uptake curve similar to that
in Fig. 3.

As we have shown elsewhere (32), the right-hand side of Eq. (57)
is the formula for the Murphree stage efficiency, »; (see Eq. 47 in Ref.
32),

Kiani = ‘Lt F(t) dt (58)

and the right-hand side of Eq. (56) is the time derivative of the
Murphree stage efficiency (see Eq. 51 in Ref. 32),

m%’;-‘ = F(t) = £{G) (59)
Equation (59) is significant; it states that the inverse of the column

characteristic is equal to the product of xi, and the time derivative
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of the Murphree stage efficiency for the chromatographic column
operated as a single equilibrium stage. The quantity, F(¢), can there-
fore be determined by nonchromatographic experimental techniques.
Once such a funection is known, it is possible (in principle) to obtain
its Laplace transform—the column characteristic—and thus to de-
scribe the behavior of elution peaks before the “long term approxi-
mation” becomes valid. For systems in which biological macromole-
cules are separated, there may be good reasons for performing these
types of measurements (33, 34).

OTHER EXAMPLES OF F(t) AND LlF(t) dt

In the preceding section, we derived the inverse of the column
characteristic F(t), and the time integral of this inverse, Ot F(t) dt,

for Case 1. Summarized below are the corresponding results for Cases
2 through 4.

Case 2. Liquid-Phase Diffusion Control (Discrete Approximation)

§Di2
. 2
G = kgL (48)
+ 8 Dy»
p 3 a?
S D 8 D;
Ft) = 3 i ~a—22 exp [— 3 a22 t] (60)

: 8Di2
/(; F() dt = ki (1 — exp [— 3 t]) (61)

Case 3. Liquid-Phase Rate Control

(i 25
R 51)
F(t) = kad(t) + kiokis exp (—kigt) (62)
14 / /
/; F@t) dt = ke [1 + 2% — Tiexp (—-kiét)] (63)
13 73

Case 4, Impermeable Liquid

G =FQ = ﬁ) "F(t)dt = 0 (64)
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List of Symbols

a thickness of liquid film (em)

A, total lateral cross-sectional area (cm?)
c concentration (moles/cm?)
¢lay average concentration (moles/em?)
é Laplace transform of concentration
é|a, Laplace transform of average concentration
D diffusion coefficient (em?/sec)
F inverse of column characteristic

e column characteristic

ks forward pseudo-first-order rate constant (sec™)

ki reverse pseudo-first-order rate constant (sec!)
L length of chromatographic column (em)

L molar flux in Jateral direction (moles/cm? sec)

D Laplace transform variable

t time (sec)

u defined by Eq. (30) (sec)

v velocity (em/see)

Yy lateral Cartesian coordinate (cm)

z axial Cartesian coordinate (cm)

Greek Letters

€ volume fraction (cm?/em3)
) Murphree stage efficiency
K partition coeflicient (moles/cm?:moles/em?)
u first normal statistical moment (sec)
g nth normal statistical moment (sec)
Superscripts
0 initial value
m value at lumping point
! local value
Subscripts
) component, ¢

18 component 7 in environment s <i.e., partition state

1
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n number of partition states
n power in Eq. (22)
s environment §

i1y 42 43 specific partition states

—

N>

9.
10.
11.
12.
18.
14.

16.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.

26.
a7.

28.

29.
30.

S Lo

1, 2 specific phases
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